Affiliation:
1. Department of Mechanical Engineering, Erik Jonsson School of Engineering, and Computer Science, The University of Texas at Dallas, 800 West, Campbell Road, Richardson, TX 75080
Abstract
Abstract
Introduced is a new physics-based three-dimensional (3D) mathematical model capable of efficiently predicting time histories of the nonlinear structural dynamics in cold rolling mills used to manufacture metal strips and sheets. The described model allows for the prediction of transient strip thickness profiles, contact force distributions, and roll-stack deformations due to dynamic disturbances. Formulation of the new 3D model is achieved through a combination of the highly efficient simplified-mixed finite element method with a Newmark-beta direct time integration approach to solve the system of differential equations that governs the motion of the roll-stack. In contrast to prior approaches to predict structural dynamics in cold rolling, the presented method abandons several simplifying assumptions and restrictions, including 1D or 2D linear lumped parameter analyses, vertical symmetry, continuous and constant contact between the rolls and strip, as well as the inability to model cluster-type mill configurations and accommodate typical profile/flatness control mechanisms used in industry. Following spatial and temporal convergence studies of the undamped step response, and validation of the damped step response, the new model is demonstrated for a 4-high mill equipped with both work-roll bending and work-roll crown, a 6-high mill with continuously variable crown (CVC) intermediate rolls, and finally a complex 20-high cluster mill. Solution times on a single computing processor for the damped 4-high and 20-high case studies are just 0.37 s and 3.38 s per time-step, respectively.
Funder
National Science Foundation
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献