A Desirability-Based Solution Search Method for Sequential Optimization of the Hot Rolling Process

Author:

Cavdar Faruk1,Kanca Erdoğan2

Affiliation:

1. Osmaniye Korkutata University Osmaniye Vocational School, , Fakiusagi, Osmaniye 80000 , Turkey

2. Iskenderun Technical University Faculty of Engineering and Natural Sciences, , Iskenderun, Hatay 31690 , Turkey

Abstract

Abstract Although it is an old technique, research on the hot rolling process maintains its importance because of its widespread usage in steel production and its requirement for a vast amount of resources, especially energy. The roll pass design of the hot rolling process considerably affects many operational parameters such as energy requirement, roll wear, working forces, and torques. Furthermore, due to the sequential nature of the rolling process, a design of any number of passes is closely interrelated with all other passes in the process. This complexity makes it challenging to find optimal design solutions that strike a balance between conflicting goals and constraints. In this article, a new optimized solution search strategy based on a desirability function is offered to address the sequential characteristics of the roll pass design. A novel optimization method utilizing response surfaces and the proposed solution search strategy is presented to reduce the shaping energy of the overall process while minimizing turning moments and radial forces on rolls during the rough rolling process. The proposed method provides integrated optimization of the process by ensuring information flow between the passes and can also be applied to other sequential processes with some modifications. The developed method and solution search strategy are illustrated and validated through a case study. The findings of the case study are compared to three distinct pass designs used in industrial power plants. The results show significant energy savings, lower turning moments, and reduced radial forces compared to the reference designs.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3