Adaptive Control of a Piezoelectric Valve for Fluid-Borne Noise Reduction in a Hydraulic Buck Converter

Author:

Pan Min1

Affiliation:

1. Department of Mechanical Engineering, Centre for Power Transmission and Motion Control, University of Bath, Bath BA2 7AY, UK e-mail:

Abstract

The hydraulic buck converter (HBC) is a novel high-bandwidth and energy-efficient device which can adjust or control flow and pressure by a means that does not rely on throttling the flow and dissipation of power. However, the nature of a HBC can cause severe fluid-borne noise (FBN), which is the unsteady pressure or flow in the fluid-filled hydraulic circuit. This is due to the operation nature of a high-speed switching valve of the device. The FBN creates fluctuating forces on the pipes which lead to system structure-borne noise that develops air-borne noise reaching to 85 dB. Thus, there is a need for an effective method that does not impair the system performance and efficiency to reduce the FBN. This paper describes the first investigation of an active controller for FBN cancellation in a HBC based on in-series and by-pass structures. The dynamics and the noise problem of the HBC are investigated using the analytical models. A piezoelectrically actuated hydraulic valve with a fast response and high force is applied as the adaptive FBN attenuator. The performance and robustness of the designed noise controller were studied with different operating conditions of a HBC. Simulated and experimental results show that excellent noise cancellation (30 dB) was achieved. The proposed active attenuator is a very promising solution for FBN attenuation in modern digital hydraulic systems which promise high energy efficiency but suffer severe noise or vibration problems in practice.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference38 articles.

1. Quieter Fluid Power Handbook: Silencing Fluid-Borne Noise,1981

2. Johnston, D. N., 2009, “A Switched Inertance Device for Efficient Control of Pressure and Flow,” ASME Paper No. DSCC2009-253510.1115/DSCC2009-2535.

3. Brown, F. T., 1987, “Switched Reactance Hydraulics: A New Way to Control Fluid Power,” National Conference on Fluid Power, Chicago, IL, Mar. 2–5, pp. 25–34.

4. A Hydraulic Rotary Switched Inertance Servo-Transformer;ASME J. Dyn. Syst. Meas. Control,1988

5. Active Control of Fluid-Borne Noise,2008

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3