Novel Integrated Active and Passive Control of Fluid-Borne Noise in Hydraulic Systems

Author:

Pan Min1,Yuan Chenggang1,Ding Beichen1,Plummer Andrew1

Affiliation:

1. Centre for Power Transmission and Motion Control, Department of Mechanical Engineering, University of Bath, Bath, United Kingdom, BA2 7AY

Abstract

Abstract Fluid-borne noise (FBN) is a major contributor to structure-borne noise (SBN) and air-borne noise (ABN) in hydraulic fluid power systems and could lead to increased fatigue in system components. FBN is caused by the unsteady flow generated by pumps and motors and propagates through the system resulting in SBN and ABN. New hydraulic technologies such as digital switched hydraulic converters also generate unavoidable FBN. This article reports on a novel integrated FBN attenuation approach, which employs a hybrid control system by integrating an active feed forward noise attenuator with passive tuned flexible hoses. The active system which consists of adaptive notch filters using a variable step-size filtered-X Least Mean Squares algorithm is used to control a newly designed high-force high-bandwidth piezoelectric actuator in order to attenuate the dominant narrowband pressure ripples. The passive hose is tuned in the frequency domain and used to cancel the high-frequency pressure ripples. A time-domain hose model considering coupling of longitudinal wall and fluid waves was used to model the flexible hose in the integrated control system. Very good FBN cancellation was achieved by using the integrated control approach in simulation and experiments. It is an effective, cost-efficient and practical solution for FBN attenuation. The problem of high noise levels generated by hydraulically powered machines has risen significantly in awareness within industry and amongst the general public, and this work constitutes an important contribution to the sustainable development of low noise hydraulic fluid power machines.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3