A Line-Contact Micro-EHL Model With Three-Dimensional Surface Topography

Author:

Chang L.1,Webster M. N.2,Jackson A.2

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802

2. Central Research Laboratory, Mobil Research and Development Corporation, Princeton, NJ 08543

Abstract

A mathematical model is presented in this paper that can be used to analyze the effect of 3-D surface topography on the thermal, transient micro-elastohydrodynamic lubrication (EHL). The model efficiently incorporates the surface deformation due to the 3D pressure rippling and the lubricant side flow around the asperities. The resulting computer implementation requires little additional storage space and does not reduce computational efficiency from its 2-D counterpart. The model is shown to sensibly describe the physical problems. The results presented in this paper and in a separate paper (Chang et al., 1993c) show that the lubricant local side flow significantly affects the contact conditions of the EHL of rough surfaces, especially under high sliding. The work reported thus far represents the authors’ continuing effort to develop an analytical/computational model for tribo-systems operating in the micro-EHL/mixed-lubrication regime. Work in the future will model and integrate the asperity contact mechanics and lubricant-surface tribo-chemistry in the micro-EHL environment.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3