Abstract
Surface texturing has been frequently used for tribological purposes in the last three decades due to its great potential to reduce friction and wear. Although biological systems advocate the use of hierarchical, multi-scale surface textures, most of the published experimental and numerical works have mainly addressed effects induced by single-scale surface textures. Therefore, it can be assumed that the potential of multi-scale surface texturing to further optimize friction and wear is underexplored. The aim of this review article is to shed some light on the current knowledge in the field of multi-scale surface textures applied to tribological systems from an experimental and numerical point of view. Initially, fabrication techniques with their respective advantages and disadvantages regarding the ability to create multi-scale surface textures are summarized. Afterwards, the existing state-of-the-art regarding experimental work performed to explore the potential, as well as the underlying effects of multi-scale textures under dry and lubricated conditions, is presented. Subsequently, numerical approaches to predict the behavior of multi-scale surface texturing under lubricated conditions are elucidated. Finally, the existing knowledge and hypotheses about the underlying driven mechanisms responsible for the improved tribological performance of multi-scale textures are summarized, and future trends in this research direction are emphasized.
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Reference242 articles.
1. History of Tribology;Dowson,1979
2. Engineering Tribology;Williams,2005
3. De la résistance causée dans les machines;Amontons;Mémoires l’Académie R. A,1699
4. Frictional Forces and Amontons' Law: From the Molecular to the Macroscopic Scale
5. MECHANISM OF METALLIC FRICTION
Cited by
165 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献