A Transformational Approach to Mechanical Design Using a Bond Graph Grammar

Author:

Finger S.1,Rinderle J. R.1

Affiliation:

1. Carnegie Mellon University

Abstract

Abstract During the design process, a designer transforms an abstract functional description for a device into a physical description that satisfies the functional requirements. In this sense, design is a transformation from the functional domain to the physical domain; however, this transformation process is not well characterized nor understood for mechanical systems. The difficulty arises, at least in part, because mechanical designs are often composed of highly-integrated, tightly-coupled components where the interactions among the components are essential to the behavior and economic execution of the design. This assertion runs counter to design methodologies in other engineering fields, such as software design and circuit design, that result in designs in which each component fulfills a single function with minimal interaction. Because of the geometry, weight, and cost of mechanical components, converting a single behavioral requirement into a single component is often both impractical and infeasible. Each component may contribute to several required behaviors, and a single required system behavior may involve many components. In fact, most mechanical components perform not only the desired behavior, but also many additional, unintended behaviors. In good mechanical designs, these additional behaviors often are exploited. The long term goal of our research is to create a transformational strategy in which the design specifications for a mechanical system can be transformed into a description of a collection of mechanical components. To realize this goal requires formal representations for the behavioral and the physical specifications of mechanical systems as well as formal representations for the behaviors and the physical characteristics of mechanical components. Because the interactions of components are important in our synthesis strategy, the representation of the behaviors of mechanical components must be linked to the representation of their physical characteristics; that is, we are concerned with modeling the relationship between form and function of components. Finally, we need a strategy that enables us to transform an abstract description of the desired behavior of a device into a description that corresponds to a collection of available physical components. In this paper, we present a graph-based language to describe both the behavioral specifications of a design as well as the behavior of the available physical components. We also briefly discuss a graph-based grammar for the representation of the physical characteristics of the components that enables us to guide the translation from specifications to components [Pinilla 89]. The transformation strategy is discussed in a companion paper [Hoover 89].

Publisher

American Society of Mechanical Engineers

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Motion-guided mechanical toy modeling;ACM Transactions on Graphics;2012-11

2. Synchronized tolerancing in growth design;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2007-09-01

3. Automatic Design Theory and Realization of Kinematic Schemes for Mechanism System;Frontiers of Mechanical Engineering in China;2006-01

4. A Design Representation to Support the Automatic Dynamic Evaluation of Electromechanical Designs;Dynamic Systems and Control, Parts A and B;2005-01-01

5. Collaborative conceptual design—state of the art and future trends;Computer-Aided Design;2002-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3