Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries

Author:

Oke Rohit A.1,Simon Terrence W.2

Affiliation:

1. Siemens Westinghouse Power Corporation, Orlando, FL

2. University of Minnesota, Minneapolis, MN

Abstract

This paper describes the advantages of introducing film cooling flow through the endwall upstream of the first stage nozzle guide vane. To perform these studies, a linear cascade is built. It consists of three vanes and two endwalls that form two passages. One endwall is flat and the other is contoured from upstream of the leading edge, continuing through the passage. The approach flow is of high turbulence and large length scale, representative of the engine combustor exit flow. Film cooling flow is introduced through two successive rows of slots, a single row of slots and slots that have particular area distributions in the pitchwise direction. Measurements are taken by heating the film cooling flow slightly above the main flow temperature and recording temperature distributions in the film cooling flow-main flow mixing zone at various axial planes. The single and double slot injection cases represent base-line injection geometries. They show that at lower ratios of coolant to main flow momentum fluxes, film cooling flow migrates toward the suction side due to secondary flow. At higher ratios, the pressure side endwall region is cooled more effectively. Observations are drawn by comparing the baseline injection cases with cases of different geometries for which slots are blocked partially to re-distribute mass and momentum injection rates of the emerging flow. The downstream evolutions of temperature contours are discussed. The idea is to utilize secondary flows to control pitchwise coolant distributions.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3