Endwall Heat Transfer and Cooling Performance of a Transonic Turbine Vane With Upstream Injection Flow

Author:

Li Zhigang1,Bai Bo1,Li Jun1,Mao Shuo2,Ng Wing F.2,Xu Hongzhou3,Fox Michael3

Affiliation:

1. Institute of Turbomachinery, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060

3. Solar Turbines Incorporated, San Diego, CA 92101

Abstract

Abstract Flow fields near the turbine vane endwall region are very complicated due to the presence of high three-dimensional passage vortices and endwall secondary flows. This makes it challenging for the endwall to be effectively cooled by using traditional endwall cooling methods, such as impingement cooling combined with local film cooling inside the vane passage. One effective endwall cooling scheme: coolant injection flow through discrete holes upstream of the vane leading edge on the endwall, has been considered by many gas turbine companies. The present paper focuses on endwall film cooling effectiveness evaluation with upstream coolant injection through discrete holes. Detailed experimental and numerical studies on endwall heat transfer and cooling performance with coolant injection flow through upstream discrete holes are presented in this paper. High-resolution heat transfer coefficient (HTC) and adiabatic film cooling effectiveness values were measured using a transient infrared thermography technique on an axisymmetric contoured endwall. The endwall tested was a scaled up inner endwall of an industrial transonic turbine vane with double-row discrete cylindrical film cooling holes located 0.39Cx upstream of the vane leading edge. The tests were performed in a transonic linear cascade blowdown wind tunnel facility. Conditions were representative of a land-based power generation turbine with exit Mach number of 0.85 corresponding to exit Reynolds number of 1.5 × 106, based on exit condition and axial chord length. A high turbulence level of 16% with an integral length scale of 3.6%P was generated using inlet turbulence grid to reproduce the typical turbulence conditions in real turbine. Low temperature air was used to simulate the typical coolant-to-mainstream condition by controlling two parameters of the upstream coolant injection flow: mass flowrate to determine the coolant-to-mainstream blowing ratio (BR = 2.5, 3.5), and gas temperature to determine the density ratio (DR = 1.2). To highlight the interactions between the upstream coolant flow and the passage secondary flow combined with the influence on the endwall heat transfer and cooling performance, a comparison of CFD predictions with experimental results was performed by solving steady-state Reynolds-averaged Navier–Stokes (RANS) using the commercial CFD solver ansys fluent V.15. A detailed numerical method validation was performed for four different Reynolds-averaged turbulence models. The realizable κ−ε model was validated to be suitable to obtain reliable numerical solution. The influences of a wide range of coolant-to-mainstream blowing ratios (BR = 1.0, 1.5, 1.9, 2.5, 3.0, 3.5) were numerically studied. Complex interactions between coolant injections and secondary flows in vane passage were presented and discussed. An optimal value of the blowing ratio for the present upstream discrete film hole is also suggested based on the current study. Results indicate that for lower values of BR, the endwall coolant coverage from the upstream double-row discrete holes is strongly controlled by the passage secondary flow, thus the cooling effectiveness is very poor. As the BR increases, the strong secondary flow in vane passage can be suppressed by the coolant injections and begin to be almost eliminated when BR increases to a critical value (BR = 2.5–3.0). Beyond the critical BR, most of the injected coolant begins to lift off from the endwall and penetrate significantly into the mainstream flow, yielding inefficient endwall cooling performance.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

Reference37 articles.

1. Gas Turbine Film Cooling;Bogard;J. Propul. Power,2006

2. Fundamental Gas Turbine Heat Transfer;Han;ASME J. Therm. Sci. Eng.,2013

3. Turbine Endwall Aerodynamics and Heat Transfer;Simon;J. Propul. Power,2006

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3