Assessment of Binary Pressure-Sensitive Paint for Temperature and Heat Transfer Coefficient Measurement of Leading-Edge Film Cooling

Author:

Burdett Timothy A.1,Yeh Ming-Feng1,Wright Lesley M.1

Affiliation:

1. Texas A&M University Turbine Heat Transfer Laboratory, , College Station, TX 77843

Abstract

Abstract Film cooling is a common technique for protecting gas turbine components from the hot combustor exhaust. Highly resolved film cooling effectiveness distributions are often obtained by measuring the mass transfer of a foreign gas coolant in mainstream air using pressure-sensitive paint (PSP). However, PSP is not able to measure the heat transfer coefficient, which is necessary to fully quantify the impact of film cooling. Instead, binary pressure-sensitive paint (BPSP) has an additional luminophore that is sensitive to temperature and can be used to measure the heat transfer coefficient. In this experiment, the film cooling effectiveness and heat transfer coefficient were measured using BPSP on the leading edge of a cylinder. The cylinder had a 7.62-cm diameter with two rows of cooling holes at ±15 deg from the leading edge. Each row contained ten holes with a 0.475-cm diameter, spaced 4 diameters apart in the spanwise direction, and angled 30 deg from the cylinder axis. The mainstream Reynolds number was 100,000 based on cylinder diameter with a turbulence intensity of 7.1%. The coolant-to-mainstream density ratio was 1.0, and the blowing ratio was 0.8. The heat transfer coefficient was measured in a transient heat transfer experiment using the reference signal from the BPSP. Despite the high uncertainty of the measurement, ranging from 24.0% to 71.1%, the results demonstrate the feasibility of the method and identify the best test methodology to minimize conduction errors.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3