Augmentation of Stagnation Region Heat Transfer Due to Turbulence From an Advanced Dual-Annular Combustor

Author:

Van Fossen G. James1,Bunker Ronald S.2

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH

2. General Electric, Schenectady, NY

Abstract

Heat transfer measurements have been made in the stagnation region of a flat plate with an elliptical leading edge. The radius of curvature at the stagnation point was similar to that of a first stage turbine vane airfoil used in a large commercial high-bypass turbofan engine. The airfoil was mounted downstream of an arc segment of a dual-annular combustor similar to the type used in an advanced turbine engine. Testing was done in air at atmospheric temperature and at pressures up to 376 kPa to simulate the vane leading edge Reynolds number seen in the engine. Spanwise average stagnation region heat transfer was measured with an electrically heated aluminum strip. Turbulence intensity, length scale and isotropy were measured using standard 2-wire hot wire probes. The combustor contained two annular rows of fuel-air swirlers which were aligned in the radial direction. Both heat transfer and hot wire data were taken at two circumferential positions; one directly downstream of a pair of swirlers and one half way between two pairs of swirlers. Reynolds number based on vane leading edge diameter was varied from 51000 to 160000. The maximum Reynolds number for turbulence measurements was limited to 87000. Turbulence intensity averaged over all test conditions was found to be 31.6%. Average axial, integral length scale was 1.29 cm, which gave a length scale-to-leading edge diameter ratio of 1.08. The turbulence was found to be nearly isotropic with the average ratio of axial to circumferential fluctuating components of 1.15. Heat transfer augmentation above laminar levels was found to vary from 34 to almost 59% depending on the Reynolds number. No effect of circumferential position was found. The heat transfer augmentation was found to be well predicted by a correlation derived from grid generated turbulence.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3