Reducing Low-Pressure Turbine Stage Blade Count Using Vortex Generator Jet Separation Control

Author:

Sondergaard Rolf1,Bons Jeffrey P.2,Sucher Matthew3,Rivir Richard B.1

Affiliation:

1. Air Force Research Laboratory, Wright-Patterson AFB, OH

2. Air Force Institute of Technology, Wright-Patterson AFB, OH

3. University of Michigan, Ann Arbor, MI

Abstract

An experimental investigation has been conducted into the feasibility of increasing blade spacing (pitch) at constant chord in a linear turbine cascade. Vortex generator jets (VGJs) located on the suction surface of each blade in the cascade are employed to maintain attached boundary layers despite the increasing tendency to separate due to the increased uncovered turning. Tests were performed at low Mach numbers and at blade Reynolds numbers between 25,000 and 75,000 (based on axial chord and inlet velocity). The vortex generator jets (30 degree injection angle and 90 degree skew angle) were operated with steady flow with momentum blowing ratios between zero and five, and from two spanwise rows of holes located at 45% and 63% axial chord. In the absence of control, pitch-averaged wake losses increase up to 600% as the blade pitch is increased from its design value to twice the design value. With the application of VGJs, these losses were driven down to or below the losses at the design pitch. The effectiveness of VGJs was found to increase modestly with increasing Reynolds number up to the highest value tested, Re = 75,000. The fluid phenomenon responsible for this remarkable range of effectiveness is clearly more than a simple boundary layer transition effect, as boundary layer trips installed on the same blades without VGJ blowing had no beneficial effect on blade losses. Also, tests conducted at elevated levels of freestream turbulence (4% at the cascade inlet) where the suction surface boundary layer is generally turbulent, showed wake loss reduction comparable to tests conducted at the nominal 1% freestream turbulence. For all configurations, blowing from the upstream row had the greatest wake influence. These findings open the possibility that future LPT designs could take advantage of active separation control using integrated VGJs to reduce the turbine part count and stage weight without significant increase in pressure losses.

Publisher

ASMEDC

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3