The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade With Unsteady Wakes

Author:

Bons Jeffrey P.1,Pluim Jon1,Gompertz Kyle1,Bloxham Matthew1,Clark John P.2

Affiliation:

1. Department of Aerospace Engineering, Ohio State University, Columbus, OH 43210

2. Propulsion Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433

Abstract

The synchronous application of flow control in the presence of unsteady wakes was studied on a highly loaded low pressure turbine blade. At low Reynolds numbers, the blade exhibits a nonreattaching separation bubble under steady flow conditions without upstream wakes. Unsteady wakes from an upstream vane row are simulated with a moving row of bars. The separation zone is modified substantially by the presence of unsteady wakes, producing a smaller separation zone and reducing the area-averaged wake total pressure loss by more than 50%. The wake disturbance accelerates transition in the separated shear layer but stops short of reattaching the flow. Rather, a new time-averaged equilibrium location is established for the separated shear layer. The focus of this study was the application of pulsed flow control using two spanwise rows of discrete vortex generator jets. The jets were located at 59% Cx, approximately the peak cp location, and at 72% Cx. The most effective separation control was achieved at the upstream location. The wake total pressure loss decreased 60% from the wake-only level and the cp distribution fully recovered its high Reynolds number shape. The jet disturbance dominates the dynamics of the separated shear layer, with the wake disturbance assuming a secondary role only. When the pulsed jet actuation was initiated at the downstream location, synchronizing the jet to actuate between wake events was key to producing the most effective separation control. Evidence suggests that flow control using vortex generator jets (VGJs) will be effective in the highly unsteady low pressure turbine environment of an operating gas turbine, provided the VGJ location and amplitude are adapted for the specific blade profile.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3