Affiliation:
1. Texas A&M University, College Station, TX
Abstract
Computations were performed to study three-dimensional turbulent flow and heat transfer in a rotating smooth and 45° ribbed rectangular channels for which heat transfer data were available. The channel aspect ratio (AR) is 4:1, the rib height-to-hydraulic diameter ratio (e/Dh) is 0.078 and the rib-pitch-to-height ratio (P/e) is 10. The rotation number and inlet coolant-to-wall density ratios, Δρ/ρ, were varied from 0.0 to 0.28 and from 0.122 to 0.40, respectively, while the Reynolds number was fixed at 10,000. Also, two channel orientations (β − 90° and 135° from the rotation direction) were investigated with focus on the high rotation and high density ratios effects on the heat transfer characteristics of the 135° orientation. These results show that, for high rotation and high density ratio, the rotation induced secondary flow overpowered the rib induced secondary flow and thus change significantly the heat transfer characteristics compared to the low rotation low density ratio case. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献