Numerical Simulation of the Effect of Channel Orientation on Fluid Flow and Heat Transfer at High Buoyancy Number in a Rotating Two-Pass Channel With Angled Ribs

Author:

Brahim Berrabah1,Miloud Aminallah1

Affiliation:

1. Materials and Reactive Systems Laboratory, Department of Mechanical Engineering, Faculty of Technology, Djillali Liabes University, Sidi Bel-Abbes 22000, Algeria e-mail:

Abstract

Convective heat transfer in a rotating two-pass square channel with 45 deg ribs is numerically investigated to simulate turbine blade cooling operation under extreme design cooling conditions (high rotation number, high density ratio, and high buoyancy number). Two channel orientations are examined β = 0 deg and β = 45 deg in order to determine the effects of passage orientation on flow and heat transfer. For a reference pressure of 10-atm and a Reynolds number of 25,000, the results show that at low buoyancy number and for both channel orientations, the combined effect of Coriolis and centrifugal buoyancy forces generates an important thermal gradient between low- and high-pressure surfaces of the first passage, while the second passage remains almost unchanged compared to the stationary cases. At high buoyancy number, and unlike low buoyancy number, the interaction of Coriolis-driven cells, rib-induced vortices, and buoyancy-driven cells are destructive, which degrade the heat transfer rate on trailing and leading surfaces in the first passage for β = 0 deg. In contrast, for β = 45 deg, this interaction is constructive, which enhances the heat transfer rate on co-trailing and co-leading surfaces. In the second passage, the interaction of rib-induced vortices and buoyancy-driven cells deteriorates significantly the heat transfer rate in case of β = 0 deg than in case of β = 45 deg compared to low buoyancy number. The computations are performed using the second-moment closure turbulence model and the numerical results are in fair agreement with available experimental data.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3