Simulation of Unsteady Small Heat Source Effects in Sub-Micron Heat Conduction

Author:

Narumanchi Sreekant V. J.1,Murthy Jayathi Y.1,Amon Cristina H.2

Affiliation:

1. School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907

2. Institute for Complex Engineered Systems and Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213

Abstract

In compact transistors, large electric fields near the drain side create hot spots whose dimensions are smaller than the phonon mean free path in the medium. In this paper, we present a study of unsteady hot spot behavior. The unsteady gray phonon Boltzmann transport equation (BTE) is solved in the relaxation time approximation using a finite volume method. Electron-phonon interaction is represented as a heat source term in the phonon BTE. The evolution of the temperature profile is governed by the interaction of four competing time scales: the phonon residence time in the hot spot and in the domain, the duration of the energy source, and the phonon relaxation time. The influence of these time scales on the temperature is investigated. Both boundary scattering and heat source localization effects are observed to have considerable impact on the thermal predictions. Comparison of BTE solutions with conventional Fourier diffusion analysis reveals significant discrepancies.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference33 articles.

1. Flik, M. I., Choi, B. I., and Goodson, K. E., 1992, “Heat Transfer Regimes in Microstructures,” ASME Journal of Heat Transfer ,114, pp. 666–674.

2. Majumdar, A., 1998, “Microscale Energy Transport in Solids,” Microscale Energy Transport, C. L. Tien et al., eds., Taylor & Francis, Chap. 1.

3. Chen, G., 1998, “Phonon Wave Effects on Heat Conduction in Thin Films,” AIAA/ASME Joint Thermophysics and Heat Transfer Conference, ASME, New York, 3, pp. 205–213.

4. Chen, G. , 2000, “Particularities of Heat Conduction in Nanostructures,” J. Nanopart. Res., 2, pp. 199–204.

5. Majumdar, A. , 1993, “Microscale Heat Conduction in Dielectric Thin Films,” ASME Journal of Heat Transfer, 115, pp. 7–16.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3