An Investigation of Treating Adiabatic Wall Temperature as the Driving Temperature in Film Cooling Studies

Author:

Zhao Lei1,Wang Ting1

Affiliation:

1. Energy Conversion and Conservation Center, University of New Orleans, New Orleans, LA 70148-2220

Abstract

In film cooling heat transfer analysis, one of the core concepts is to deem film cooled adiabatic wall temperature (Taw) as the driving potential for the actual heat flux over the film-cooled surface. Theoretically, the concept of treating Taw as the driving temperature potential is drawn from compressible flow theory when viscous dissipation becomes the heat source near the wall and creates higher wall temperature than in the flowing gas. But in conditions where viscous dissipation is negligible, which is common in experiments under laboratory conditions, the heat source is not from near the wall but from the main hot gas stream; therefore, the concept of treating the adiabatic wall temperature as the driving potential is subjected to examination. To help investigate the role that Taw plays, a series of computational simulations are conducted under typical film cooling conditions over a conjugate wall with internal flow cooling. The result and analysis support the validity of this concept to be used in the film cooling by showing that Taw is indeed the driving temperature potential on the hypothetical zero wall thickness condition, i.e., Taw is always higher than Tw with underneath (or internal) cooling and the adiabatic film heat transfer coefficient (haf) is always positive. However, in the conjugate wall cases, Taw is not always higher than wall temperature (Tw), and therefore, Taw does not always play the role as the driving potential. Reversed heat transfer through the airfoil wall from downstream to upstream is possible, and this reversed heat flow will make Tw > Taw in the near injection hole region. Yet evidence supports that Taw can be used to correctly predict the heat flux direction and always result in a positive adiabatic heat transfer coefficient (haf). The results further suggest that two different test walls are recommended for conducting film cooling experiments: a low thermal conductivity material should be used for obtaining accurate Taw and a relative high thermal conductivity material be used for conjugate cooling experiment. Insulating a high-conductivity wall will result in Taw distribution that will not provide correct heat flux or haf values near the injection hole.

Publisher

ASME International

Subject

Mechanical Engineering

Reference15 articles.

1. Stagnation Film Cooling and Heat Transfer, Including its Effect Within the Hole Pattern;Mick;ASME J. Turbomach.

2. Use of the Adiabatic Wall Temperature in Film Cooling to Predict Wall Heat Flux and Temperature;Harrison;ISROMAC Paper

3. Bohn, D., Bonhoff, B., Schonenborn, H., and Wilhelmi, H., 1995, “Prediction of the Film-Cooling Effectiveness of Gas Turbine Blades Using a Numerical Model for the Coupled Simulation of Fluid Flow and Diabatic Walls,” AIAA Paper No. 95-7105.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3