Analysis of a LPT Rotor Blade for a Geared Engine: Part I — Aero-Mechanical Design and Validation

Author:

Giovannini Matteo1,Rubechini Filippo1,Marconcini Michele1,Arnone Andrea1,Bertini Francesco2

Affiliation:

1. University of Florence, Florence, Italy

2. GE Avio, Rivalta di Torino, Italy

Abstract

The rotational speed of low pressure turbines (LPT) for geared turbofan applications is significantly increased looking for potential benefit in performance, weight and overall dimensions. As a drawback, the high speed LPT are characterized by critical mechanical constraints due to the large centrifugal stresses in conjunction with the use of lightweight materials. The present activity was carried out in the framework of the Clean Sky European research project ITURB (Optimal High-Lift Turbine Blade Aero-Mechanical Design), aimed at designing and validating a turbine blade for a geared open rotor engine. This two-part paper presents the redesign and the analysis of an optimized rotor blade starting from a baseline configuration, representative of a state-of-the-art LPT rotor. In the redesign activity high standard of performance was required in conjunction with tight mechanical and geometrical constraints. The design strategy was based on an effective multi-objective optimization strategy. The aerodynamic performance was evaluated by means of 3D steady multi-row viscous computations using a two-equation k-ω turbulence model. At the same time, the mechanical integrity checks were mainly based on the evaluation of the maximum rotor tensile stress due to centrifugal forces. A simplified and very fast tool was developed in order to compute the centrifugal stress. Finally a response-surface approach based on neural-networks (ANNs) was adopted for the design space exploration. The design was validated by means of a comprehensive experimental campaign carried out in a low-speed turbine single-stage facility. A comparison between the numerical and experimental results is presented in terms of the main rotor performance for a fixed Reynolds number while varying the rotor incidence angle. Unsteady numerical analysis of both the baseline and the optimized blade were carried out by using a multi-equation, transition-sensitive, turbulence model and considering the boundary conditions measured on the test rig.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3