Towards the development of an advanced wind turbine rotor design tool integrating full CFD and FEM

Author:

Cozzi Lorenzo,Bellucci Juri,Giovannini Matteo,Papi Francesco,Bianchini Alessandro

Abstract

Abstract Large, highly flexible wind turbines of the new generation will make designers face un-precedent challenges, mainly connected to their huge dimensions. To tackle these challenges, it is commonly acknowledged that design tools must evolve in the direction of both improving their accuracy and turning into holistic, multiphysics tools. Furthermore, the wind turbine industry is reaching a high level of maturity, and ever more accurate and reliable design tools are required to further optimise these machines. Within this framework, the study shows the development of an integrated platform for blade design integrating 3D CFD flow simulations and 3D-FEM structural analysis. Artificial intelligence techniques are applied to develop an optimization procedure based on the proposed tool. The potential of the new platform has been tested on the well-known test case of the MEXICO rotor, for which an optimization of the blade design has been carried out. Exploring a design space sampled with 2000 CFD and FEM computations, increases in blade torque have been obtained at each of the three tip-speed ratios (TSR) investigated, ranging from 6% at the nominal TSR to 14% at the lowest one, while stresses on the blade are kept almost unaltered.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3