Gradient-Based Adjoint and Design of Experiment CFD Methodologies to Improve the Manufacturability of High Pressure Turbine Blades

Author:

Zamboni Giulio1,Banks Gabriel1,Bather Simon1

Affiliation:

1. Rolls-Royce plc, Derby, UK

Abstract

The tolerance of a turbine blade aerofoil is determined by the requirements to achieve an aerodynamic performance in operation. In fact, the manufacturing tolerance applied to the profile is driven by the effects of geometrical non-conformances on the efficiency and flow capacity of the aerofoil. However, this tolerance also has an impact on the ease with which the aerofoil can be manufactured, with tighter tolerance leading to lower manufacturing conformity. This paper details the application of an adjoint RANS solver and the according series of Design of Experiments (DoE) CFD calculations for a high pressure turbine blade to the above problem. There are two aims of this work; the first is to show that simpler linear CFD perturbation can be used to evaluate the effect of the geometric non-conformance. The second is to validate the spatial geometric correlation factor of the control points used in the manufacturing process on the performance evaluation with DoE techniques. This also verified the applicability of the adjoint CFD techniques; in fact the adjoint CFD calculation is an order of magnitude less computationally expensive than a large series of DoE RANS CFD calculations. The results confirm that the peak suction area is the most critical control region for the effect on the efficiency and flow capacity. Moreover, the CFD investigations show that a significant level of correlation exists between the influence factors at different control points. This suggests that not only the amount of geometric deviation but also the stream surface variation of profile tolerance significantly influence the final aerodynamic performance. The results from this calculation allow the creation of a 3D sensitivity map which will be used during the manufacturing of the aerofoil to optimise the control of the spatial distribution of the geometric non-conformance and to directly assess the expected performance effect during the manufacturing quality inspection. The methodology detailed in this paper shows how the CFD adjoint methods could be used for improved manufacturability of turbine blades ensuring that the critical characteristic features are controlled on the surface, relaxing the profile tolerance on those surface areas where the impact on the aerodynamic performance is predicted to be lower.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on aerodynamic optimization of turbomachinery using adjoint method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-23

2. An Adjoint-based Sensitivity Formulation Using the Discontinuous Galerkin Method;AIAA Aviation 2019 Forum;2019-06-14

3. Surrogate Modeling of Manufacturing Variation Effects on Unsteady Interactions in a Transonic Turbine;Journal of Engineering for Gas Turbines and Power;2018-10-11

4. Discrete-Adjoint Solver Tests and Consistency Analysis for Discontinuous Galerkin Discretization;2018 Fluid Dynamics Conference;2018-06-24

5. Performance Impact of Manufacturing Variations for Multistage Steam Turbines;Journal of Propulsion and Power;2017-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3