Suppression of Subsynchronous Vibrations in a 11 MW Steam Turbine Using Integral Squeeze Film Damper Technology at the Exhaust Side Bearing

Author:

Ferraro Riccardo1,Catanzaro Michael1,Kim Jongsoo2,Massini Michela3,Betti Davide1,Livermore-Hardy Richard3

Affiliation:

1. GE Oil & Gas Nuovo Pignone, Florence, Italy

2. Waukesha Bearings, Pewaukee, WI

3. Waukesha Bearings, Rickmansworth, UK

Abstract

The presence of high subsynchronous vibrations and other rotordynamic instabilities in steam turbines can prevent operation at full speed and/or full load. The destabilizing forces generating subsynchronous vibrations can be derived from bearings, seals, impellers or other aerodynamic sources. The present paper describes the case of an 11 MW steam turbine, driving a syngas centrifugal compressor train, affected by subsynchronous vibrations at full load. After the occurrence of anomalous vibrations at high load and a machine trip due to the high vibrations, the analysis of data collected at the site confirmed instability of the first lateral mode. Further calculations identified that the labyrinth seal at the balance drum was the main source of destabilizing effects, due to the high pre-swirl and the relatively tight seal clearance. The particular layout of the turbine, a passing-through machine with a combined journal/double thrust bearing on the steam admission side, together with the need for a fast and reliable corrective action limited the possible solutions. Based on the analyses performed, adjusting the clearance and preload of the journal bearings could not have ensured stable operation at each operating condition. The use of swirl brakes to reduce the steam pre-swirl at the recovery seal entrance would have required a lengthy overhaul of the unit and significant labor to access and modify the parts. The final choice was a drop-in replacement of only the rear bearing (on the steam exhaust side) with a bearing featuring integral squeeze film damper (ISFD) technology. In addition to being a time efficient solution, the ISFD technology ensured an effective tuning of stiffness and damping, as proven by the field results. The analyses carried out to understand the source of the subsynchronous vibrations and to identify possible corrective actions, as well as the comparison of rotordynamic data before and after the application of the bearing with ISFD technology, are discussed.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3