Novel Designs of Turbine Blades for Additive Manufacturing

Author:

Magerramova Liubov1,Vasilyev Boris1,Kinzburskiy Vladimir1

Affiliation:

1. CIAM, Moscow, Russia

Abstract

Improving engine performance requires creating new materials and improving design and manufacturing. Additive Manufacturing (AM) is advancing rapidly and allows us to produce details of complex shapes that cannot be produced by traditional methods. The goal of this study was to demonstrate the possibility of using AM for the manufacture of turbine blades with a complex geometry, including those with advanced cooling systems, which cannot be manufactured by conventional methods. This paper presents the results of the design and calculations of high-pressure turbine (HPT) cooled blades, as well as a low-pressure turbine (LPT) uncooled blade that was designed using topology optimization (TO). Several blades were manufactured using AM. 3D tomography test results for those blades confirm the possibility of AM application in production of blades with complex geometry.

Publisher

American Society of Mechanical Engineers

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3