A Computational Fluid Dynamics Investigation Comparing the Performance of an Alternative Valvetrain Design Against a Traditional Poppet Valvetrain

Author:

Robinson Austin Clay1,Garrett Norman H.1,Vaseleniuck Darrick2,Uddin Mesbah1

Affiliation:

1. University of North Carolina at Charlotte Department of Mechanical Engineering, , Charlotte, NC 28223

2. Vaztec, LLC. , Mooresville, NC 28115

Abstract

Abstract The poppet valve is by far the most widely used in cylinder head design of internal combustion (IC) engines; however, poppet valves themselves create significant flow restrictions during both the intake and exhaust strokes, thus causing a reduction in volumetric efficiency that affects overall engine performance. By removing the restrictive poppet valve from the flow path of air into and out of the cylinder head and allowing air to flow unobstructed, any given IC engine can achieve greater volumetric efficiency and higher specific output. The Vaztec ECOREV rotary valve system utilizes straight-cut flow passages that reduce such restrictions. This rotary valve system is designed to be directly driven by the crankshaft, thereby replacing the camshaft and poppet valve system altogether. This paper will primarily explore the differences in flow characteristics between this rotary valve and a conventional poppet valve cylinder head using both computational fluid dynamics (CFD) and flow bench data. Both configurations will be evaluated on the same single-cylinder four-stroke internal combustion engine. CFD simulations were run at multiple valve opening positions on each cylinder head configuration for both intake and exhaust cycles to validate the CFD process against flow bench test data for both cylinder head designs. The CFD was performed in 3D using hexahedral meshing and steady-state Reynolds-averaged Navier–Stokes (RANS) turbulence models. Comparison between the two engine configurations will include both intake and exhaust airflow rates as well as discharge coefficients and overall flow field evaluation using numerous scalar and vector properties.

Publisher

ASME International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3