Design, Modeling, and Feasibility Analysis of Rotary Valve for Internal Combustion Engine

Author:

Dong Wenbo1,Bedekar Vishwas N.1ORCID

Affiliation:

1. Department of Engineering Technology, Middle Tennessee State University, Murfreesboro, TN 37130, USA

Abstract

There have been several studies focused on improving the efficiency of internal combustion engines using various techniques such as better design, better materials, and regenerative technologies. Recently, in 2016, Toyota reported 40% gas engine efficiency with their Prius model; however, there remains a lot more room for improvement towards the theoretical maximum value of 73% using the Carnot theorem. In this research, we present a freshly designed valvetrain that has the potential to improve the efficiency of a known conventional valve designed engine. The goal of this research was to prove the feasibility and significance of the new valve design. This research developed a simulation model of the new valve design and produced its physical property data. The data of the new design were compared to the conventional poppet valve design with respect to several parameters to discuss its working principle and advantages over the conventional valve mechanism. Modeling was performed using Python programming to predict the valve-opening mechanism. The design of experiments was setup to control and tune different parameters accordingly within the reasonable range of engine speed, viz., 1000–6000 rpm to simulate various working conditions. The maximum opening area for the rotary valve is calculated to be 0.795 sq.in which is smaller than the poppet valve’s area of 1.315 sq.in. However, under an example of 2900 rpm, the rotary valve was able to remain fully opened with constant efficiency of about 54% from 40 to 160 degrees of the crankshaft angle. While the poppet valve can achieve 88% efficiency at 90 degrees of the crankshaft angle and the efficiency significantly drops on either side of the maxima, the authors believe that this research would help explore improvements in the performance of a combustion cycle due to the novel rotary valve design that is investigated in this paper.

Funder

Middle Tennessee State University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3