Uncertainty Analysis of Piezoelectric Vibration Energy Harvesters Using a Finite Element Level-Based Maximum Entropy Approach

Author:

Wang X. Q.1,Liao Yabin2,Mignolet Marc P.1

Affiliation:

1. SEMTE Faculties of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287

2. Mechanical Engineering Technology, Penn State Erie, The Behrend College, 5101 Jordan Rd, Erie, PA 16563

Abstract

Abstract Quantifying effects of system-wide uncertainties (i.e., affecting structural, piezoelectric, and/or electrical components) in the analysis and design of piezoelectric vibration energy harvesters have recently been emphasized. The present investigation proposes first a general methodology to model these uncertainties within a finite element model of the harvester obtained from an existing finite element software. Needed from this software are the matrices relating to the structural properties (mass, stiffness), the piezoelectric capacitance matrix as well as the structural-piezoelectric coupling terms of the mean harvester. The thermal analogy linking piezoelectric and temperature effects is also extended to permit the use of finite element software that do not have piezoelectric elements but include thermal effects on structures. The approach is applied to a beam energy harvester. Both weak and strong coupling configurations are considered, and various scenarios of load resistance tuning are discussed, i.e., based on the mean model, for each harvester sample, or based on the entire set of harvesters. The uncertainty is shown to have significant effects in all cases even at a relatively low level, and these effects are dominated by the uncertainty on the structure versus the one on the piezoelectric component. The strongly coupled configuration is shown to be better as it is less sensitive to the uncertainty and its variability in power output can be significantly reduced by the adaptive optimization, and the harvested power can even be boosted if the target excitation frequency falls into the power saturation band of the system.

Funder

Air Force Multi University Research Initiative

Air Force Office of Scientific Research

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Reference55 articles.

1. Piezoelectric MEMS Vibration Energy Harvesters: Advances and Outlook;Microelectron. Eng.,2017

2. Energy Harvesting Vibration Sources for Microsystems Applications;Meas. Sci. Technol.,2006

3. A Review of Power Harvesting From Vibration Using Piezoelectric Materials;Shock Vib. Dig.,2004

4. Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers;J. Electroceram.,2007

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3