Surrogate Model for Design Uncertainty Estimation of Nonlinear Electromagnetic Vibration Energy Harvester

Author:

Kulik MarcinORCID,Gabor RafałORCID,Jagieła MariuszORCID

Abstract

The paper proposes a solution to the problem of estimating the uncertainty of the output power with respect to the design parameters for an electromagnetic vibration energy harvesting converter. Due to costly utilisation of time-domain mathematical models involved in the procedure of determination of the average output power of the system, an algorithm for developing the surrogate model that enables rapid estimation of this quantity within the prescribed frequency band limits is proposed. As a result, the metamodel sensitive to the most impactful design parameters is developed using Kriging with successive refinement of the design grid for gaining the accuracy. Under operational conditions with a constant magnitude of the acceleration signal and the prescribed frequency band limits, the surrogate model enables evaluation of the average output power of the system at 105 design points in less than 2 s of computer execution time. The consistency and accuracy of the results obtained from the surrogate model is confirmed by comparison of selected results of computations with measurements carried out on the manufactured prototype. Based on the latter and the surrogate model, the confidence intervals for the design procedure were determined and the most important spread quantities were estimated, providing quantitative information on the accuracy of the design procedure developed for the considered system.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3