Significance of the Direct Excitation Mechanism for High-Frequency Response of Premixed Flames to Flow Oscillations

Author:

Acharya Vishal S.1,Lieuwen Timothy C.2

Affiliation:

1. Ben Zinn Aerospace Combustion Lab, Georgia Institute of Technology, 635 Strong St NW, Atlanta, GA 30318

2. School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Dr, Atlanta, GA 30332

Abstract

Abstract Premixed flames are sensitive to flow disturbances, which can arise from acoustic or vortical fluctuations. For transverse instabilities, it is known that a dominant mechanism for flame response is “injector coupling,” whereby pressure oscillations associated with transverse waves excite axial flow disturbances. These axial flow disturbances then excite heat release oscillations. The objective of this paper is to consider another mechanism—the direct sensitivity of the unsteady heat release to transverse acoustic waves—and to compare its significance relative to the induced axial disturbances, in a linear framework. The rate at which the flame adds energy to the disturbance field is quantified using the Rayleigh criterion and evaluated over a range of control parameters, such as flame length and swirl number. The results show that radial modes induce heat release fluctuations that always add energy to the acoustic field, whereas heat release fluctuations induced by mixed radial-azimuthal modes can add or remove energy. These amplification rates are then compared to the flame response from induced axial fluctuations. For combustor-centered flames, these results show that the direct excitation mechanism has negligible amplification rates relative to the induced axial mechanism for radial modes. For transverse modes, the fact that the nozzle is located at a pressure node indicates that negligible induced axial velocity disturbances are excited; as such, the direct mechanism dominates. For flames that are not centered on pressure nodes, the direct mechanism for mixed modes dominates for certain nozzle locations and flame angles.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference29 articles.

1. Incorporation of Combustion Instability Issues Into Design Process: GE Aeroderivative and Aero Engines Experience,2005

2. Attenuation of Gas Turbine Combustor Pressure Oscillations Using Symmetry Breaking,2011

3. Combustion Instabilities in Industrial Gas Turbines: Solar Turbines' Experience,2005

4. Thermoacoustic Design Tools and Passive Control: Siemens Power Generation Approaches,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3