Estimation of in Situ Elastic Properties of Biphasic Cartilage Based on a Transversely Isotropic Hypo-Elastic Model

Author:

Garcia J. J.1,Altiero N. J.1,Haut R. C.1

Affiliation:

1. Department of Materials Science and Mechanics, College of Engineering and Orthopædic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824

Abstract

Articular cartilage is known to behave nonlinearly for large deformations. Mechanical properties derived from small strain experiments yield excessively large deformations in finite element models used in the study of severe blunt impact to joints. In this manuscript, a method is presented to determine the nonlinear elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model. The elastic properties were estimated by fitting two force-displacement curves (in rapid loading and at equilibrium) obtained from large deformation indentation relaxation tests on cartilage using a nonporous spherical indentor. The solid skeleton of the cartilage was modeled as a transversely isotropic hypo-elastic material and a commercial finite element program was employed to solve the problem of a layer indented by a rigid sphere. Components of the hypo-elasticity tensor were made dependent on deformation according to the variations defined by a transversely isotropic hyperelastic formulation given earlier by others. Material incompressibility was assumed during the initial stage of rapid loading. The analysis was utilized for the determination of in situ properties of rabbit retropatellar cartilage at large deformations. The model was able to fit the material response to rapid loading and equilibrium indentation test data to approximately 50 percent strain. This material model suggested even higher percentage of stress supported by the fluid phase of cartilage than given earlier by small deformation theories of biphasic cartilage. [S0148-0731(00)01401-1]

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3