Parametric Vibration of a Flexible Structure Excited by Periodic Passage of Moving Oscillators

Author:

Gao Hao1,Yang Bingen1

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90007

Abstract

Abstract Flexible structures carrying moving subsystems are found in various engineering applications. Periodic passage of subsystems over a supporting structure can induce parametric resonance, causing vibration with ever-increasing amplitude in the structure. Instead of its engineering implications, parametric excitation of a structure with sequentially passing oscillators has not been well addressed. The dynamic stability in such a moving-oscillator problem, due to viscoelastic coupling between the supporting structure and moving oscillators, is different from that in a moving-mass problem. In this paper, parametric resonance of coupled structure-moving oscillator systems is thoroughly examined, and a new stability analysis method is proposed. In the development, a set of sequential state equations is first derived, leading to a model for structures carrying a sequence of moving oscillators. Through the introduction of a mapping matrix, a set of stability criteria on parametric resonance is then established. Being of analytical form, these criteria can accurately and efficiently predict the dynamic stability of a coupled structure-moving oscillator system. In addition, by the spectral radius of the mapping matrix, the global stability of a coupled system can be conveniently investigated in a parameter space. The system model and stability criteria are illustrated and validated in numerical examples.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3