Second Spine: Upper Body Assistive Device for Human Load Carriage

Author:

Park Joon-Hyuk1,Jin Xin1,Agrawal Sunil K.2

Affiliation:

1. Robotics and Rehabilitation (ROAR) Lab, Department of Mechanical Engineering, Columbia University, New York, NY 10027 e-mail:

2. Professor Fellow ASME Director of ROAR Laboratory Robotics and Rehabilitation (ROAR) Lab, Department of Mechanical Engineering, Columbia University, New York, NY 10027 e-mail:

Abstract

This study presents the development of second spine, an upper body assistive device for human load carriage. The motivation comes from reducing musculoskeletal injuries caused by carrying a heavy load on the upper body. Our aim was to design a wearable upper body device that can prevent musculoskeletal injuries during human load carriage by providing a secondary load pathway—second spine—to transfer the loads from shoulders to pelvis while also allowing a good range of torso motion to the wearer. Static analysis of the backpack and the second spine was first performed to investigate the feasibility of our concept design. The development of second spine had two considerations: load distribution between shoulders and pelvis, and preserving the range of torso motion. The design was realized using load bearing columns between the shoulder support and hip belt, comprising multiple segments interconnected by cone-shaped joints. The performance of second spine was evaluated through experimental study, and its biomechanical effects on human loaded walking were also assessed. Based on the findings from second spine evaluation, we proposed the design of a motorized second spine which aims to compensate the inertia force of a backpack induced by human walking through active load modulation. This was achieved by real-time sensing of human motion and actuating the motors in a way that the backpack motion is kept nearly inertially fixed. Simulation study was carried out to determine the proper actuation of motors in response to the human walking kinematics. The performance of motorized second spine was evaluated through an instrumented test-bed using Instron machine. Results showed a good agreement with simulation. It was shown that the backpack motion can be made nearly stationary with respect to the ground which can further enhance the effectiveness of the device in assisting human load carriage.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3