Film-Cooling on a Gas Turbine Blade Pressure Side or Suction Side With Compound Angle Shaped Holes

Author:

Gao Zhihong,Narzary Diganta P.,Han Je-Chin1

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

The film-cooling effectiveness on the surface of a high pressure turbine blade is measured using the pressure sensitive paint technique. Compound angle laidback fan-shaped holes are used to cool the blade surface with four rows on the pressure side and two rows on the suction side. The coolant injects to one side of the blade, either pressure side or suction side. The presence of wake due to the upstream vanes is simulated by placing a periodic set of rods upstream of the test blade. The wake rods can be clocked by changing their stationary positions to simulate progressing wakes. The effect of wakes is recorded at four phase locations along the pitchwise direction. The freestream Reynolds number, based on the axial chord length and the exit velocity, is 750,000. The inlet and exit Mach numbers are 0.27 and 0.44, respectively, resulting in a pressure ratio of 1.14. Five average blowing ratios ranging from 0.4 to 1.5 are tested. Results reveal that the tip-leakage vortices and endwall vortices sweep the coolant on the suction side to the midspan region. The compound angle laidback fan-shaped holes produce a good film coverage on the suction side except for the regions affected by the secondary vortices. Due to the concave surface, the coolant trace is short and the effectiveness level is low on the pressure surface. However, the pressure side acquires a relatively uniform film coverage with the multiple rows of cooling holes. The film-cooling effectiveness increases with the increasing average blowing ratio for either side of coolant ejection. The presence of stationary upstream wake results in lower film-cooling effectiveness on the blade surface. The compound angle shaped holes outperform the compound angle cylindrical holes by the elevated film-cooling effectiveness, particularly at higher blowing ratios.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3