Study of the Convective Heat Transfer in a Rotating Coolant Channel

Author:

Guidez J.1

Affiliation:

1. Office National d’Etudes et de Recherches Aerospatiales, BP 72-92322 Chaˆtillon Cedex, France

Abstract

An experimental and theoretical study of convective heat transfer in a rotating coolant channel was inspired by the potential application to cooled turbine rotor blades. The flow that circulates into the internal cavity of the blade is subjected to Coriolis and centrifugal forces, in addition to pressure and friction forces. In this study, the channel is a rectangular-sectioned duct that rotates around an orthogonal axis. The experimental rig is composed of a vacuum enclosure, which includes an electric furnace, and the test section, heated by radiative flux. The temperatures of the wall test section are measured with thermocouples and the infrared pyrometer technique still under development. The convective heat transfer coefficients are determined with transient or steady-state techniques. It is shown that Coriolis acceleration has a beneficial influence on mean heat transfer. Locally, along the pressure side, the transfer increases strongly and on the contrary along the suction side, it decreases slightly. These effects are analyzed theoretically with a Navier-Stokes three dimensional (with mixing length model of turbulence) and explained by the influence of Coriolis force, which induces a secondary flow and distorts the velocity and temperature profiles. Experimental and theoretical results are presented and discussed.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3