Coriolis and buoyancy effects on heat transfer in viewpoint of field synergy principle and secondary flow intensity for maximization of internal cooling

Author:

Hosseinalipour Seyed Mostafa,Shahbazian Hamidreza,Sunden BengtORCID

Abstract

AbstractThe present investigation emphases on rotation effects on internal cooling of gas turbine blades both numerically and experimentally. The primary motivation behind this work is to investigate the possibility of heat transfer enhancement by dean vortices generated by Coriolis force and U-bend with developing turbulent in the view point of the field synergy principle and secondary flow intensity analysis. A two-passage internal cooling channel model with a 180° U-turn at the hub section is used in the analysis. The flow is radially outward at the first passage of the square channel and then it will be inward at the second passage. The study covers a Reynolds number (Re) of 10,000, Rotation number (Ro) in the range of 0–0.25, and Density Ratios (DR) at the inlet between 0.1–1.5. The numerical results are compared to experimental data from a rotating facility. Results obtained with the basic RANS SST k-ω model are assessed completely as well. A field synergy principle analysis is consistent with the numerical results too. The results state that the secondary flows due to rotation can considerably improve the synergy between the velocity and temperature gradients up to 20%, which is the most fundamental reason why the rotation can enhance the heat transfer. In addition, the Reynolds number and centrifugal buoyancy variations are found to have no remarkable impact on increasing the synergy angle. Moreover, vortices induced by Rotation number and amplified by Reynolds number increase considerable secondary flow intensity which is exactly in compliance with Nusselt number enhancement.

Funder

Iran University of Science and Technology

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3