Water Single-Phase Fluid Flow and Heat Transfer in Capillary Tubes

Author:

Bucci A.1,Celata G. P.2,Cumo M.1,Serra E.2,Zummo G.2

Affiliation:

1. University of Rome “La Sapienza”, Rome, Italy

2. ENEA – National Institute of Thermal Fluid Dynamics, Rome, Italy

Abstract

This paper reports the results of an experimental investigation of fluid flow and single-phase heat transfer of water in stainless steel capillary tubes. Three tube diameters are tested: 172 μm, 290 μm and 520 μm, while the Reynolds number varying from 200 up to 6000. Fluid flow experimental results indicate that in laminar flow regime the friction factor is in good agreement with the Hagen-Poiseuille theory for Reynolds number below 800–1000. For higher values of Reynolds number, experimental data depart from the Hagen-Poiseuille law to the side of higher f values. The transition from laminar to turbulent regime occurs for Reynolds number in the range 1800–3000. This transition is found in good agreement with the well known flow transition for rough commercial tubes. Heat transfer experiments show that heat transfer correlations in laminar and turbulent regimes, developed for conventional size tubes, are not adequate for calculation of heat transfer coefficient in microtubes. In laminar flow the experimental values of heat transfer coefficient are generally higher than those calculated with the classical correlation, while in turbulent flow regime experimental data do not deviate significantly from classical heat transfer correlations. Deviation from classical heat transfer correlations increase as the channel diameter decrease.

Publisher

ASMEDC

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3