Investigation of Non-Newtonian Characteristics of Water Flow in Micro-/Nanochannels and Tight Reservoirs

Author:

Ding Heying1,Song Fuquan1ORCID,Hu Xiao2,Sun Yeheng3,Zhu Weiyao4

Affiliation:

1. School of Petrochemical and Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China

2. Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China

3. Exploration and Development Scientific Research Institute of Shengli Oilfield Branch of Sinopec, Dongying 257015, China

4. Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The characteristic scale of pore flow in tight reservoirs is generally in the range of 0.1 μm to 1 μm, which shows the obvious micro- and nanoscale effect. The traditional oil and gas seepage theory cannot accurately describe the flow law of liquid in the micro- and nanopores. The determination of seepage characteristics is crucial to the development, layout, and prediction of tight oil. Therefore, a non-Newtonian fluid model is established to discuss the flow characteristics of confined liquid in the heterogeneous pores of microtubules and reveal the nonlinear seepage law of water in micro- and nanochannels and tight reservoirs. Based on the characteristics of non-Newtonian fluid of confined fluid in micro- and nanospace, the flow model of non-Newtonian fluid under the action of shear stress was deduced. The flow velocity variation of liquid in micro- and nanochannel and dense core was analyzed, and the flow rate of water was less than that predicted by macro theory. According to the flow experiment of water in micro- and nanochannels, the flow model of power-law non-Newtonian fluid was verified. At the same time, through the flow experiment of water in the dense rock core, the non-Newtonian model was used for nonlinear fitting, and the non-Newtonian power-law parameters and average pore radius were obtained, which verified the effectiveness of the non-Newtonian flow model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3