Analysis of Flow Resistance Inside Microchannels With Different Inlet Configurations Using Micro-PIV System

Author:

Lee Sang-Joon1,Kim Guk-Bae1

Affiliation:

1. Pohang University of Science and Technology, Pohang, Korea

Abstract

Most microfluidic chips consist of several microchannels inside. In order to design microfluidic chips efficiently, it is important to predict the flow passage and to understand the flow characteristics on the chip. In this study, the flow structure inside microchannels has been investigated using a micro-PIV system. We focused on the flow resistance with respect to the inlet configuration of microchannels. The microchannels made of poly-dimethyl-siloxane (PDMS) material were fabricated by a micro-molding technique using SU-8 (photoresist) master. The width (w) and depth of the microchannels were fixed as 100 μm and 58 μm, respectively. Six different inlet configurations with curvature radii in the ranges from r = 0.2w to 1.5w were tested in this study. As a result, with increasing the curvature radius of the inlet corner, the streamwise mean velocity develops slowly in the entrance region, but the fully developed velocity at further downstream is increased. When the curvature radius is larger than r = 0.6w, the reduction rate of flow resistance is not so significant. For the microchannels with r = 0.6w, 0.8w and 1.0w the downstream mean velocity at channel center has nearly the same value of about 276 mm/sec, 10.5% larger than that of r = 0.2w. The simple rounding of microchannel inlet corner reduces flow resistance effectively by smoothing the incoming flow. The length of entrance region is much smaller than that of macro-scale channel.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3