Affiliation:
1. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
Abstract
The study of the entrance region of microchannels and microdevices is limited, yet important, since the effect on the flow field and heat transfer mechanisms is significant. An experimental study has been carried out to explore the laminar hydrodynamic development length in the entrance region of adiabatic square microchannels. Flow field measurements are acquired through the use of microparticle image velocimetry (micro-PIV), a nonintrusive particle tracking and flow observation technique. With the application of micro-PIV, entrance length flow field data are obtained for three different microchannel hydraulic diameters of 500 μm, 200 μm, and 100 μm, all of which have cross-sectional aspect ratios of 1. The working fluid is distilled water, and velocity profile data are acquired over a laminar Reynolds number range from 0.5 to 200. The test-sections were designed as to provide a sharp-edged microchannel inlet from a very large reservoir at least 100 times wider and higher than the microchannel hydraulic diameter. Also, all microchannels have a length-to-diameter ratio of at least 100 to assure fully developed flow at the channel exit. The micro-PIV procedure is validated in the fully developed region with comparison to Navier–Stokes momentum equations. Good agreement was found with comparison to conventional entrance length correlations for ducts or parallel plates, depending on the Reynolds range, and minimal influence of dimensional scaling between the investigated microchannels was observed. New entrance length correlations are proposed, which account for both creeping and high laminar Reynolds number flows. These correlations are unique in predicting the entrance length in microchannels and will aid in the design of future microfluidic devices.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献