Mathematical Modeling of Constrained Vapor Bubbles

Author:

Ajaev Vladimir S.1,Homsy G. M.2

Affiliation:

1. Southern Methodist University, Dallas, TX

2. University of California at Santa Barbara, Santa Barbara, CA

Abstract

We develop a mathematical model of a long vapor bubble in a micro-channel with given temperature distributions on the walls. We assume that the shape of the bubble is dominated by capillary forces everywhere except near the walls of the channel and use a lubrication-type analysis to find the local vapor-liquid interface shapes and mass fluxes near the walls. Both two- and three-dimensional steady-state solutions are found such that evaporation near the heated bottom is balanced by condensation in colder areas of the vapor-liquid interface. The total length in this steady regime is found from the integral mass balance and investigated as a function of heating conditions. Steady-state conditions can no longer be satisfied when the intensity of heating is above a certain level. In this regime the bubble is expanding. We investigate such expansion in the framework of a two-dimensional model in the limit of small capillary number.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3