Bubble-Induced Water Hammer and Cavitation in Microchannel Flow Boiling

Author:

Fogg David W.1,Goodson Kenneth E.2

Affiliation:

1. Creare Inc, P.O. Box 71, Hanover, NH 03755

2. Department of Mechanical Engineering, Stanford University, Building 530, Room 224, Stanford, CA 94305

Abstract

While microchannel flow boiling has received much research attention, past work has not considered the impact of acoustic waves generated by rapidly nucleating bubbles. The present work provides a theoretical framework for these pressure waves, which resembles classical “water hammer” theory and predicts a strong influence on bubble nucleation rates and effective convection coefficients. These pressure waves result directly from confinement in microchannel geometries, reflect from geometrical transitions, and superimpose to create large transients in the static liquid pressure. Feedback from the pressure waves inhibits bubble growth rates, reducing the effective heat transfer. Pressure depressions generated by the propagating pressure pulses can cause other bubbles to grow at lower than expected wall temperatures. The additional nucleation enhances heat transfer over short times but increased flow instability may inhibit heat transfer over longer periods. The limited quantitative measurements available in the literature indicate confined bubble growth rates in microchannels are significantly lower than those predicted by the classical Rayleigh–Plesset equation. The present model predicts confined bubble growth rates to within ± 20%. A nondimensional number indicative of the relative magnitude of the water hammer pressure to bubble pressure is proposed to characterize the transitions from conventional to microchannel flow boiling.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference41 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3