Combined Cycle Off-Design Performance Estimation: A Second-Law Perspective

Author:

Can Gülen S.,Joseph J1

Affiliation:

1. GE Energy, 1 River Road, Building 40-412, Schenectady, NY 12345

Abstract

A combined cycle power plant (or any power plant, for that matter) does very rarely—if ever—run at the exact design point ambient and loading conditions. Depending on the demand for electricity, market conditions, and other considerations of interest to the owner of the plant and the existing ambient conditions, a combined cycle plant will run under boundary conditions that are significantly different from those for which individual components are designed. Accurate calculation of the “off-design” performance of the overall combined cycle system and its key subsystems requires highly detailed and complicated computer models. Such models are crucial to high-fidelity simulation of myriad off-design performance scenarios for control system development to ensure safe and reliable operability in the field. A viable option in lieu of sophisticated system simulation is making use of the normalized curves that are generated from rigorous model runs and applying the factors read from such curves to a known design performance to calculate the off-design performance. This is the common method adopted in the fulfillment of commercial transactions. These curves; however, are highly system-specific and their broad applicability to a wide variety of configurations is limited. Utilizing the key principles of the second law of thermodynamics, this paper describes a simple, physics-based calculation method to estimate the off-design performance of a combined cycle power plant. The method is shown to be quite robust within a wide range of operating regimes for a generic combined cycle system. As such, a second-law-based approach to off-design performance estimation is a highly viable tool for plant engineers and operators in cases where calculation speed with a small sacrifice in fidelity is of prime importance.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference27 articles.

1. CCGT: Breaking the 60 Percent Efficiency Barrier;Robb;Power Eng. Int.

2. Status and Perspectives of Fossil Power Generation;Rukes;Energy

3. Brooks, F. J. , 2000, “General Electric Gas Turbine Performance Characteristics,” GER-3567, www.gepower.com.

4. H-System™ Technology Update;Pritchard

5. ALSTOM’s Sequential Combustion Concept for Gas Turbines Advantages and Opportunities;Lindvall;VDI-Ber.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3