A Modified Temperature-Jump Method for the Transition and Low-Pressure Regime

Author:

Beikircher T.1,Benz N.1,Spirkl W.2

Affiliation:

1. Bayerisches Zentrum fur Angewandte Energieforschung e.V., Domagkstr. 11, D-80807 Munchen, Germany

2. Sektion Physik der Ludwig-Maximilians, Universitat Munchen, Amalienstr. 54, D-80799 Munchen, Germany

Abstract

For modeling the gas heat conduction at arbitrary Knudsen numbers and for a broad range of geometries, we propose a modified temperature-jump method. Within the modified approach, we make a distinction between an inner convex surface and an outer concave surface enclosing the inner surface. For problems, where only a single geometric length is involved, i.e., for large parallel plates, long concentric cylinders and concentric spheres, the new method coincides at any Knudsen number with the interpolation formula according to Sherman, and therefore also with the known solutions of the Boltzmann equation obtained by the four momenta method. For the general case, where more than one geometric length is involved, the modified temperature method is trivially correct in the limit of high pressure and identical with Knudsen’s formula in the limit of low pressure. For intermediate pressure, where there is a lack of known solutions of the Boltzmann equation for general geometries, we present experimental data for the special two-dimensional plate-in-tube configuration and compare it with results of the modified temperature-jump method stating good agreement. The results match slightly better compared to the standard temperature method and significantly better compared to the interpolation formula according to Sherman. For arbitrary geometries and Knudsen numbers, the modified temperature method shows no principal restrictions and may be a simple approximative alternative to the solution of the Boltzmann equation, which is rather cumbersome.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3