Heat Transport in Evacuated Perlite Powders for Super-Insulated Long-Term Storages up to 300 °C

Author:

Beikircher Thomas1,Demharter Matthias2

Affiliation:

1. e-mail:

2. e-mail:  Bavarian Center for Applied Energy Research (ZAE Bayern), Division 1: Technology for Energy Systems and Renewable Energy, Walther-Meißner-Straße 6, 85748 Garching, Germany

Abstract

Vacuum super insulation (VSI) with expanded perlite powder is commonly used at cryogenic temperatures, but principally can also be adapted to applications at higher temperatures, such as the long-term storage of hot water in solar thermal systems. Due to the lack of experimental data in the respective temperature range, especially without external load, thermal conductivity measurements have been performed with commercial perlite powder up to 150°C mean sample temperature, corresponding to storage temperatures of around 300°C. Two different experimental geometries have been used: a guarded hot plate (GHP) setup and a cut-off concentric cylinder (CCC) apparatus. Furthermore, the radiative heat transport has been determined separately by extinction measurements using Fourier transform infrared (FTIR) spectroscopy. In addition to the laboratory experiments, a real-size prototype of a solar VSI-storage tank with 16.4 m3 water storage volume has been constructed, and the effective thermal conductivity of the perlite insulation has been determined from a heat loss measurement. The heat transport in evacuated perlite has also been treated theoretically using common models and approaches for gas heat conduction, solid-body conduction and heat transfer by thermal radiation. For the coupling between solid-body and gas conduction which occurs in the intergranular spaces of a powder material, a simple model has been developed. The total effective thermal conductivity λeff of a vacuum super insulation with dry, evacuated perlite powder (p≤0.01 mbar,ρ≈60 kg/m3) amounts to 0.007–0.016 W/mK for mean sample temperatures between 50°C and 150°C, compared to 0.003–0.005 W/mK at cryogenic temperatures. For the real-size storage prototype, the value λeff=0.009 W/mK has been obtained at T=90°C (storage temperature), p = 0.08 mbar and ρ=92.4 kg/m3, which compares to 0.03–0.06 W/mK for dry conventional storage insulations. With the applied theoretical models and approaches, the effective thermal conductivity of evacuated perlite and its individual contributions can successfully be described at different densities (55-95 kg/m3), compression methods, vacuum pressures (10-3-1000 mbar) and filling gases (air, Ar, Kr) up to mean sample temperatures of T=150°C. With regard to practical purposes, it has shown that vacuum super insulation with perlite is a suitable and economic method to achieve low thermal conductivities also at medium storage temperatures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference41 articles.

1. Hofmann, A., 1965, “Messungen der Wärmeleitfähigkeit von Pulvervakuumisolierungen,” Berichte aus Technik und Wissenschaft 19, Linde AG, Munich, pp. 18–23.

2. Thermal Conductivity of Evacuated Insulating Powders for Temperatures From 10 K to 275 K;Therm. Conduct.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3