A Comprehensive Thermodynamic Approach to Acoustic Cavitation Simulation in High-Pressure Injection Systems by a Conservative Homogeneous Two-Phase Barotropic Flow Model

Author:

Catania Andrea E.1,Ferrari Alessandro1,Manno Michele1,Spessa Ezio1

Affiliation:

1. Energetics Department & IC Engines Advanced Laboratory, Politecnico di Torino, Torino, Italy

Abstract

A general conservative numerical model for the simulation of transmission-line unsteady fluid dynamics has been developed and applied to high-pressure injection systems. A comprehensive thermodynamic approach for modeling acoustic cavitation, i.e., cavitation induced by wave propagation, was proposed on the basis of a conservative homogeneous two-phase barotropic flow model of a pure liquid, its vapor, and a gas, both dissolved and undissolved. A physically consistent sound speed equation was set in a closed analytical form of wide application. For the pure-liquid flow simulation outside the cavitation regions, or in the absence of these, temperature variations due to compressibility effects were taken into account, for the first time in injection system simulation, through a thermodynamic relation derived from the energy equation. Nevertheless, in the cavitating regions, an isothermal flow was retained consistently with negligible macroscopic thermal effects due to vaporization or condensation, because of the tiny amounts of liquid involved. A novel implicit, conservative, one-step, symmetrical, and trapezoidal scheme of second-order accuracy was employed to solve the partial differential equations governing the pipe flow. It can also be enhanced at a high-resolution level. The numerical model was applied to wave propagation and cavitation simulation in a high-pressure injection system of the pump-line-nozzle type for light and medium duty vehicles. The system was relevant to model assessment because, at part loads, it presented cavitating flow conditions that can be considered as severe, at least for a diesel injection system. The predicted time histories of pressure at two pipe locations and of injector needle lift were compared to experimental results, substantiating the validity and robustness of the developed conservative model in simulating acoustic cavitation inception and desinence with great accuracy degree. Cavitation transients and the flow discontinuities induced by them were numerically predicted and analyzed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

1. Column Separation Accompanying Liquid Transients in Pipes;Baltzer;ASME J. Basic Eng.

2. Analysis of Transient Pressures in Bubbly, Homogeneous, Gas-Liquid Mixtures;Chaudhry;ASME J. Fluids Eng.

3. Implicit Numerical Model of a High-Pressure Injection System;Catania;ASME J. Eng. Gas Turbines Power

4. Shu, J.-J., Edge, K. A., Burrows, C. R., and Xiao, S., 1993, “Transmission Line with Vaporous Cavitation,” ASME Paper No. 93-WA/FPST-2.

5. Study of Unsteady Flow Phenomena in an Automotive Diesel Injection System;Catania

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3