Error Reduction in Infrared Thermography by Multiframe Super-Resolution

Author:

Chandramohan Aditya1,Lyons Sara K.2,Weibel Justin A.1,Garimella Suresh V.2

Affiliation:

1. Cooling Technologies Research Center, School of Mechanical Engineering Purdue University, West Lafayette, IN 47907 e-mail:

2. Cooling Technologies Research Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

Abstract

Accurate temperature measurement techniques are critical for monitoring hotspots that induce thermal stresses in electronics packages. Infrared thermography is a popular nonintrusive method for emissivity mapping and measuring surface temperature distribution, but is often impeded by the low native resolution of the camera. A promising technique to mitigate these resolution limits is multiframe super-resolution, which uses multiple subpixel shifted images to generate a single high-resolution image. This study quantifies the error reduction offered by multiframe super-resolution to demonstrate the potential improvement for infrared imaging applications. The multiframe super-resolution reconstruction is implemented using an algorithm developed to interpolate the sub-pixel-shifted low-resolution images to a higher resolution grid. Experimental multiframe super-resolution temperature maps of an electronic component are measured to demonstrate the improvement in feature capture and reduction in aliasing effects. Furthermore, emissivity mapping of the component surface is conducted and demonstrates a dramatic improvement in the temperature correction by multiframe super-resolution. A sensitivity analysis is conducted to assess the effect of registration uncertainty on the multiframe super-resolution algorithm; simulated images are used to demonstrate the smoothing effect at sharp emissivity boundaries as well as improvement in the feature size capture based on the native camera resolution. These results show that, within the limitations of the technique, multiframe super-resolution can be an effective approach for improving the accuracy of emissivity-mapped temperature measurements.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3