Simultaneous Measurement of Temperature and Strain in Electronic Packages Using Multiframe Super-Resolution Infrared Thermography and Digital Image Correlation

Author:

Lyons Sara K.1,Chandramohan Aditya1,Weibel Justin A.1,Garimella Suresh V.1

Affiliation:

1. Cooling Technologies Research Center, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Abstract For micro-electronic components and systems, reliability under thermomechanical stress is of critical importance. Experimental characterization of hotspots and temperature gradients, which can lead to deformation in the component, relies on accurate mapping of the surface temperature. One method of noninvasively acquiring this data is through infrared (IR) thermography. However, IR thermography is often limited by the typically low resolution of such cameras. Additionally, the unique surface finish preparations required to infer physical deformation using digital image correlation (DIC) generally interfere with the ability to measure the temperature with IR thermography, which prefers a uniform high emissivity. This work introduces a one-shot technique for the simultaneous measurement of surface temperature and deformation using multiframe super-resolution-enhanced IR imaging combined with DIC analysis. Multiframe super-resolution processing uses several subpixel shifted images, interpolating the image set to extract additional information and create a single higher-resolution image. Measurement of physical deformation is incorporated using a test sample with a black background and low-emissivity speckle features, heated in a manner that induces a nonuniform temperature field and stretched to induce physical deformation. Through processing and filtering, data from the black surface regions used for surface temperature mapping are separated from the speckle features used to track deformation with DIC. This method allows DIC to be performed on the IR images, yielding a deformation field consistent with the applied tensioning. While both the low- and super-resolution data sets can be successfully processed with DIC, super-resolution helps to reduce noise in the extracted deformation fields. As for temperature measurement, using super-resolution is shown to allow for better removal of the speckle features and reduce noise, as quantified by a lower mean deviation from the spatial moving average.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference20 articles.

1. Thermal Challenges in Next-Generation Electronic Systems;Trans. Compon. Packag. Technol.,2008

2. Recent Developments in Micro and Nanoscale Thermometry;Microscale Thermophys. Eng.,2001

3. Novel Nanoscale Thermal Property Imaging Technique: The 2ω Method. I. Principle and the 2ω Signal Measurement;J. Vac. Sci. Technol. B Microelectron. Nanom. Struct.,2006

4. The Use of Thermochromic Liquid Crystals in Research Applications, Thermal Mapping and Non-Destructive Testing,1991

5. Near-Field Thermometry Sensor Based on the Thermal Resonance of a Microcantilever in Aqueous Medium;Sensors,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3