Design of Magnetic Bearing Control System Based on Active Disturbance Rejection Theory

Author:

Jin Chaowu1,Guo Kaixuan1,Xu Yuanping23,Cui Hengbin1,Xu Longxiang1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

3. Laboratory of Robotic Systems, Ecole Polytechnique Federale Lausanne (EPFL), Lausanne 1015, Switzerland e-mail:

Abstract

At present, most of the magnetic bearing system adopts the classical proportional–integral–derivative (PID) control strategy. However, the external disturbances, system parameter perturbations, and many other uncertain disturbances result in PID controller difficult to achieve high performance. To solve this problem, a linear active disturbance rejection controller (LADRC) based on active disturbance rejection controller (ADRC) theory was designed for magnetic bearing. According to the actual prototype parameters, the simulation model was built in matlab/simulink. The step and sinusoidal disturbances with PID and LADRC control strategies were simulated and compared. Then, the experiments of step and sinusoidal disturbances were performed. When control parameters are consistent, the experiment showed that the rotor displacement fluctuation decreased by 28.6% using the LADRC than PID control under step disturbances and decreased by around 25.8% under sinusoidal disturbances. When the rotor is running at 24,000 r/min and 27,000 r/min, the displacement of rotor is reduced by around 15% and 13.7%, respectively. Rotate the rotor with step disturbances and sinusoidal disturbances. It can also be seen that LADRC has the advantages of fast response time and good anti-interference. The experiments indicate that the LADRC has better anti-interference performance compared with PID controller.

Publisher

ASME International

Subject

General Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3