Sliding model control of active magnetic bearing rotor system based on state observer

Author:

Li Lingchun1ORCID,Ouyang Huimin2,Ou Meiying1,Gao Laixin1

Affiliation:

1. School of Mechanical and Electrical Engineering, Chuzhou University, Chuzhou, China

2. College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China

Abstract

This paper addresses a novel sliding mode control based on state observer for active magnetic bearing rotor system. Firstly, the state-space model of a radial AMB rotor system is established with considering unbalance disturbance and gyro effect for a vertical flywheel energy storage system. Then a sliding mode function and switching surface are constructed based on an observer. Meanwhile, a separation and decoupling strategy based on Finsler’s lemma is proposed. Through this method, the constraint relationship between the controller gain, active magnetic bearing matrices and the Lyapunov variables is eliminated. After that a method for chattering reduction in the sliding-mode controller is raised. Relied on these techniques, new sufficient conditions for the stability of AMB rotor system are given in the framework of linear matrix inequalities. Finally, the effectiveness of the proposed sliding mode controller is validated on the experimental platform of the flywheel energy storage system.

Funder

the research initiation fund of Chuzhou university

the research project of Anhui higher education institutions

the Anhui Provincial Department of Education University Discipline (Major) Top Talent Academic Support Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3