Stokes Flow Within Networks of Flow Branches

Author:

Hellou Mustapha1,Lominé Franck1

Affiliation:

1. LGCGM (Laboratoire de Génie Civil et Génie Mécanique), EA3913 Univ Rennes, INSA Rennes, Rennes 35708, France e-mail:

Abstract

Stokes flow in the branches of structured looped networks with successive identical square loops and T-junction branches is studied. Analytical expressions of the flow rate in the branches are determined for network of one, two, three, or four loops with junction head loss neglected relative to regular one. Then, a general expression of the flow rate is deduced for networks with more loops. This expression contains particularly a sequence of coefficients obeying to a recurrence formula. This sequence is a part of the fusion of Fibonacci and Tribonacci sequences. Furthermore, a general formula that expresses the quotient of flow rate in successive junction flow branches is given. The limit of this quotient for an infinite number of junction branches is found to be equal to 2+3. When the inlet and outlet flow rates are equal, this quotient obeys to a sequence of invariant numbers whatever the ratio of flow rate in the outlet branches is. Thus, the flow rate distribution for any configuration of inlet and outlet flow rates can be calculated. This study is also performed using Hardy–Cross method and a commercial solver of Navier-Stokes equation. The analytical results are approached very well with Hardy–Cross method. The numerical resolution agrees also with analytical results. However, the difference with the numerical results becomes significant for low flow rate in the junction branches. The flow streamlines are then determined for some inlet and outlet flow rate configurations. They particularly illustrate that recirculation flow takes place in branches of low flow rate.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3