Affiliation:
1. James C. Dowell Professor Fellow ASME e-mail: Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211
Abstract
Molecular Dynamics (MD) simulation is carried out to investigate the normal and explosive boiling of thin film adsorbed on a metal substrate whose surface is structured by an array of nanoscale spherical particles. The molecular system is comprised of the liquid and vapor argon as well as a copper wall. The nanostructures have spherical shape with uniform diameters while the thickness of liquid film is constant. The effects of transvers and longitudinal distances as well as the diameter of nanoparticles are analyzed. The simulation is started from an initial configuration for three phases (liquid argon, vapor argon and solid wall); after equilibrating the system at 90 K, the wall is heated suddenly to a higher temperature that is well beyond the critical temperature of argon. Two different superheat degrees are selected: a moderately high temperature of 170 K for normal evaporation and much higher temperature 290 K for explosive boiling. By monitoring the space and time dependences of temperature and density as well as net evaporation rate, the normal and explosive boiling process on a flat surface with and without nanostructures are investigated. The results show that the nanostructure has significant effect on evaporation/boiling of thin film. The degrees of superheat and size of nanoparticles have significant effects on the trajectories of particles and net evaporation rate. For the cases with nanostructure, liquid responds very quickly and the number of evaporation molecules increases with increasing the size of particles from 1 to 2 nm while it decreases for d = 3 nm.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference30 articles.
1. Kunugi, T., 2004, “Heat Transfer Enhancement by Nano-Scale Structure Formed on Surface: Experimental and Molecular Dynamics Study,” Proceedings of the First International Symposium on Micro and Nano Technology (ISMNT), Paper No. XXV II-3-01.
2. New Heat-Exchange and Heat-Transfer Methods Between Solids and Fluids
3. Nagayama, G., Kawagoe, M., and Tsuruta, T., 2007, “Molecular Dynamics Simulations of Interfacial Heat and Mass Transfer at Nanostructured Surface,” Proceedings of the International Conference on Integration and Commercialization of Micro and Nanosystems, Paper No. MNC2007-21410, pp. 1–10.
4. Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process;J. Am. Chem. Soc.,2005
5. Effects of Naostructures on Surface Wettability: A Molecular Dynamics Study;Trans. Jpn. Soc. Mech. Eng. B,2007
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献