Effects of a Reacting Cross-Stream on Turbine Film Cooling

Author:

Anderson Wesly S.1,Polanka Marc D.1,Zelina Joseph1,Evans Dave S.2,Stouffer Scott D.3,Justinger Garth R.3

Affiliation:

1. Air Force Research Laboratory, Propulsion Directorate, Wright Patterson AFB, Dayton, OH 45433

2. Naval Air Systems Command, NAS, Patuxent River, MD 20670

3. University of Dayton Research Institute, Dayton, OH 45469

Abstract

Film cooling plays a critical role in providing effective thermal protection to components in modern gas turbine engines. A significant effort has been undertaken over the last 40 years to improve the distribution of coolant and to ensure that the airfoil is protected by this coolant from the hot gases in the freestream. This film, under conditions with high fuel-air ratios, may actually be detrimental to the underlying metal. The presence of unburned fuel from an upstream combustor may interact with this oxygen rich film coolant jet resulting in secondary combustion. The completion of the reactions can increase the gas temperature locally resulting in higher heat transfer to the airfoil directly along the path line of the film coolant jet. This secondary combustion could damage the turbine blade, resulting in costly repair, reduction in turbine life, or even engine failure. However, knowledge of film cooling in a reactive flow is very limited. The current study explores the interaction of cooling flow from typical cooling holes with the exhaust of a fuel-rich well-stirred reactor operating at high temperatures over a flat plate. Surface temperatures, heat flux, and heat transfer coefficients are calculated for a variety of reactor fuel-to-air ratios, cooling hole geometries, and blowing ratios. Emphasis is placed on the difference between a normal cylindrical hole, an inclined cylindrical hole, and a fan-shaped cooling hole. When both air and nitrogen are injected through the cooling holes, the changes in surface temperature can be directly correlated with the presence of the reaction. Photographs of the localized burning are presented to verify the extent and locations of the reaction.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of different internal impingement structures and cratered film cooling holes on overall cooling effectiveness;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-04-21

2. Jet-Reactive Turbine Circular Efficiency;Lecture Notes in Mechanical Engineering;2022

3. Influence of the degree of off-design of the traction nozzle of a jet reaction turbine on its efficiency;Journal of Physics: Conference Series;2021-01-01

4. Analysis of an Additively Manufactured Cooled Ultra Compact Combustor Vane;Journal of Thermal Science and Engineering Applications;2019-07-18

5. Mitigation of Heat Release from Film Cooling in Fuel-Rich Environments;Journal of Propulsion and Power;2016-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3